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Internship context
Sony Computer Science Laboratories (Sony CSL), Paris. This Laboratory was established in
1988 with the purpose of contributing to humankind and society by creating new research
areas, research paradigms, new technologies and new businesses. Sony CSL is organized
with different research teams, including the Music Team composed with 2 PhD students, 8
permanent researchers and a few freelance developers.

Researchers work with Sony-affiliated musicians and content providers to push the bound-
aries of creativity and understand the complexity of modern music production processes.
These collaborations with artists help to improve the tools they develop to best meet mu-
sicians’ workflow. The team recently participated in the AI Song Contest, in partnership
with french artist Whim Therapy. This international competition explores the use of AI in
the songwriting process, with teams composed of musicians, researchers, data scientists and
developers.



Abstract

These recent years, deep neural networks models have demonstrated their performance in
many tasks like source separation, style classification, and music generation. Nevertheless,
these models are often very heavy and computationally expensive. Given DrumGAN, a GAN-
based model for drum sounds synthesis, we want to train a lighter model using compression
methods, notably knowledge distillation. This would allow to cut the inference time, thus
unlocking new interaction possibilities for artists working with this tool. Based on the state
of the art of generative models in audio and different compression techniques, we explain
the challenges posed by this research project. After testing different types of knowledge
distillation on a toy classifier model, we implement these techniques on the DrumGAN model.
Even if the sounds generated by our compressed model, or student model, are not as rich as
the basic model, we still get faster samples generations. Using the Fréchet Audio distance,
an evaluation metric for audio generative models, we compare the different distilled models
we trained.

Keywords: generative adversarial networks, drum sounds, knowledge distillation, quantiza-
tion

Ces dernières années, les modèles de réseaux de neurones profonds ont démontré leurs per-
formances dans de nombreuses tâches comme la séparation de sources, la classification de
styles, et la génération de musique. Néanmoins, ces modèles sont souvent très lourds et
coûteux en calcul. Dans le cas de DrumGAN, un GAN pour la synthèse de sons de batterie,
nous souhaitons entraîner un modèle plus léger en utilisant des méthodes de compression,
notamment la distillation de connaissances. Cela permettrait de réduire le temps d’inférence,
ouvrant ainsi de nouvelles possibilités d’interaction pour les artistes travaillant avec cet outil.
Sur la base de l’état de l’art des modèles génératifs en audio et des différentes techniques de
compression, nous expliquons les défis posés par ce projet de recherche. Après avoir testé
différents types de distillation sur un modèle de classificateur, nous mettons en œuvre ces tech-
niques sur DrumGAN. Si les sons générés par notre modèle compressé, ou modèle étudiant,
ne sont pas aussi riches que le modèle de base, nous obtenons tout de même des générations
de sons plus rapides. En utilisant la distance audio de Fréchet, une métrique d’évaluation
pour les modèles génératifs audio, nous comparons les différents modèles distillés que nous
avons entraîné.

Mots-clés: réseaux adversariaux génératifs, sons de batterie, distillation de connaissances,
échantillonage
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1 Introduction

1.1 New tools for Music Production

Generative music has become an answer to a simple demand: more music is needed than ever,
thanks to a ballooning number of content creators on streaming and social media platforms.
In the next decade, more and more music content will be written partially or entirely with
machine learning software. The latest development in AI is already fueling its use in popular
music, and reinvents the interaction between music artists and their tools [1]. For instance,
Fiebrink [2] developed the Wekinator for mapping arbitrary gestures of human beings to
parameters of sound synthesis algorithms. Regarding music generation, machine learning-
based generative models also open great avenues for the future, as they are able to capture
specific aspects of music generation like melody and composition [3], timbre [4, 5] or vocals
[6, 7].

Early generative music models were able to generate music in the symbolic domain, that is to
say the specific timing of notes, their pitch and velocity [8, 3, 9]. The symbolic approach allows
to model the problem in a relatively low-dimensional space, but constrains the generations
to music that can be accurately expressed in those terms. Indeed, if modeling Bach chorales
in the symbolic domain is relevant, one misses the timbre information which is essential
when modeling other music genres such as contemporary popular music. Other promising
researches have then tried to generate music directly in raw audio form. Some models were
successfully trained to generate music either in the raw audio domain, [10, 11, 5], or in
the spectral domain [12, 4]. A wide variety of architectures are being used, ranging from
variational auto-encoders [13, 14] to generative adversarial networks [15].

Based on such models, researchers try to develop a new generation of musical tools infused
with machine learning such as Google’s Magenta Studio [16], or Sony CSL’s DrumNet [17],
BassNet [18] and NONOTO [19]. However, there exists a huge competition in music tools,
as new plugins are released everyday. Therefore, in order to be actually utilized by profes-
sionals, new tools must at least meet the industry standards. In its situation, working with
Sony-affiliated artists, Sony CSL puts a strong focus on the sample rate of generated sounds,
which should at least be 44100 Hz, and the models’ ability to operate in real-time, or very
close. Another key element is the portability and accessibility of the models. Indeed, ma-
chine learning models rely on deep networks with millions of parameters and require strong
computation capabilities to train and run them, such as powerful Graphic Processor Units
(GPUs). Even if this is becoming more of a standard with time, most computers are not
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equipped with such computing power. Researchers then have no choice but to find ways to
miniaturize their models, in order to be able to deploy them tomorrow.

1.2 Compressing Neural Networks

Compressing techniques have been proposed to reduce the size of deep models, without los-
ing too much quality. As increasingly large neural networks are considered, reducing their
storage and computational cost becomes a must, especially for some real-time applications
such as virtual instruments. This challenge also arises when deploying deep learning sys-
tems to portable devices with limited resources (e.g. memory, CPU, energy, bandwidth).
Smartphones and micro computers like Raspberries and Jetson Nano now embed graphic
processors, making them suitable for running powerful models. However, their limited bat-
tery and the lack of large cooling system will still force models to become more and more
compressed.

Recent works on compressing and accelerating deep neural networks show ways to achieve
these goals. Pruning based methods explore the redundancy in the model parameters and
try to remove the redundant and uncritical ones. The knowledge distillation based methods
aim at training a more compact neural network to reproduce the output of a pre-trained
larger network.

1.3 The Problem with DrumGAN

The main goal of this internship is to apply network compression techniques to DrumGAN,
a GAN-based model for drum synthesis that was developed at SONY CSL [20]. DrumGAN
allows to synthesize high-fidelity drum samples based on perceptual characteristics chosen by
the user.

User experience has shown that the DrumGAN plug-in is limited by the time needed to
generate a sound. At the time being, this causes problems for Sony CSL developers. To
expose them, let us start from the DrumGAN interface, shown on figure 1. This interface
features an 2D slider, that allows the user to explore portions of the higher-dimensional latent
space. When clicking on a point on this slider, the corresponding sound is generated by the
model, and a buffer is filled with it. This interface is explicitly designed for exploration,
as the user is expected to click multiple times in order to refine their choice. Therefore, a
first problem appears here, as the generation lag occurs multiple times, which can be very
frustrating. Indeed, being able to generate sounds instantly would make the interaction

7



ATIAM Compressing audio generative models for embedded device

Figure 1: DrumGAN’s interface

between the music producer and the machine way smoother.

A solution to cut this refinement time could be to get the 2D slider to display information
about what it contains, like in another Sony CSL plugin called Impact Drums (Fig. 2) where
audio descriptors are shown. However, this leads us to a second issue : this 2D slider
shows a randomly chosen 2D plane, lying in the higher dimensional latent space, and it
can (should) be modified during the exploration process. Therefore, it is impossible to pre-
compute descriptors. Indeed, to display audio features in the space, we need to sample
points from the currently displayed portion of the space, generate audios from them and
then analyze their features. We then fallback on the first issue with generation time, which
is exacerbated here because of the large amount of audio we need to generate and analyze,
in order to have a smooth visualization in the latent space.
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Figure 2: Impact Drums’ interface. The 2D slider displays information about the sounds
(here the release time).

1.4 Our Proposal

In this project, we want to compress DrumGAN without sacrificing the sound quality of
generations.

In the remainder of this document, we provide an introduction to deep learning, starting from
the basic concepts of neural networks (Sec. 2.1). Then, we briefly present recent generative
models targeted at learning audio data (Sec. 2.1.5). We then introduce Generative Adversarial
Networks (GANs) (Sec. 2.2), and some network compression techniques (Sec. 2.4). After this
state-of-the-art (Sec. 2), we will present the experiments and results that we have obtained
(Sec. 3). This will be followed by a discussion and comparisons of the different experiments,
in order to analyze and understand the strengths and weaknesses of our approach. Finally,
a brief conclusion will summarize the content of the report, stress our contributions and
introduce directions for future work (Sec. 4).

9



ATIAM Compressing audio generative models for embedded device

2 State of the art

In this work, we will mostly work with Generative Adversarial Networks (GANs) which rely
on Convolutional Neural Networks (CNNs) as their core component. Hence, we here briefly
introduce the basics of CNNs and GANs, and the most commonly used tweaks that allow
training them efficiently. Then, we will introduce the framework of knowledge distillation,
that we heavily rely on in this work, as well as other network compression techniques.

2.1 Basics of Neural Networks

In this section, we are going to give a brief introduction on neural networks. For more detailed
explanations, we refer the reader to some more in-depth works [21, 22]

2.1.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a network composed of units, also called neurons or
nodes. For the sake of brevity, we are going to consider units that constitute what are called
fully-connected layers. These units are operators applying a non-linear transformation to an
input (Fig. 3).

...
...

...
...

Figure 3: Figure of a neuron in a fully-connected layer. The neuron outputs the activation
a, which is a non-linear transformation of an input x

The output a , called the activation, is computed as such:

a = f(x.w + b) (1)

= f(
N∑
i=1

xi.wi + b) (2)

10
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where x is the input vector of dimension N , w the weights of the unit, b the bias, and f a
non-linear function called activation function.

To build an ANN, we stack layers of such units on top of each other. Every unit of a layer is
connected to all units of the previous layer, creating a weighted computation graph producing
an output y from an input x. If we denote Θ the set of all parameters (weights and biases
of all neurons), we can also see the neural network as a parametric function gΘ : X → Y ,
where X and Y are respectively the space of inputs and outputs.

Once an ANN is built, we want to train it, in order for it to approximate a function. Typically,
in a classifier model, we have data pairs (x, y) ∈ X × Y , where x is a data point and y its
associated label. We want the network gΘ to learn how to produce an output ŷ = gΘ(x) that
is as close to y as possible. Thus, we can consider an optimization problem for the network:

argmin
Θ

L(ŷ, y) (3)

where ŷ is the output of the network and y is the expected output for a specific given input x.
L is a loss function that measures the error between ŷ and y. Typical loss functions include
Mean-Squared Error or Binary Cross Entropy.

The goal is to reach a value of Θ for which the loss L(ŷ, y) is as small as possible. We start
from a random initialization of Θ and perform successive optimization iterations to change its
value into one that reduces the loss. The most basic update rule for Θ is called the gradient
descent:

Θ← Θ− λ ∗ ∂L(ŷ, y)

∂Θ
(4)

where λ is called the learning rate. There exist many more optimization algorithms that
perform better than the vanilla gradient descent, such as the Stochastic Gradient Descent
[23] or the widely used ADAM algorithm [24].

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep neural networks. Their layers and
units are a bit different from the ones presented above, making them particularly suitable to
the analysis and generation of visual imagery.

In a convolutional layer, the set of weights and biases is completed with a set of filters (or
kernels) that are learnt through optimization. At computation time, these filters are convo-
luted across the layer’s input. This discrete convolution operation, denoted by ?, consists in
sliding the filters across the input and computing the dot product of the filter and the input,
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Figure 4: An example of a 2D discrete convolution: the filter k is slid over the input x.
For every position, the dot product between the filter and a particular region of the input is
computed, producing a feature map.

Input data Convolution +
ReLU

Fully connected  
layer

Softmax Classify

Jazz
Reggea

Hip Hop
Funk

Bossa Nova

Disco

Techno

0.1

0.6
0.15

0.05

0.05
0.01

0.05

1*1*channels  
(here 7 channels)Kernel/Filter

.
.

.

Convolution +
ReLU

Feature maps Feature maps

Figure 5: A convolutional neural network used for music genre classification. It is composed
of two convolutional layers followed by ReLUs, and one fully connected layer

for each position (Fig. 4) This operation is defined by parameters such as the step-size, most
commonly called stride, the input padding and others. The result of this discrete convolu-
tion operation then goes through an activation function, just as above. Given a convolutional
layer l, let wl be the set of its weights, bl its biases and {kli}i∈[1,N ] the set of its N filters.
The kli share a fixed dimensionality, called the filter size. Given an input x, the activation al

produced by the layer l is computed as follows:

∀i ∈ [1, N ], ali = f(wli(k
l
i ? x) + bli) (5)

Therefore, the activation al is made of N channels, also called feature maps, an important
notion we will use later in this work.

A typical CNN combines convolutional layers to extract high-level features in the data, and
fully-connected layers, to recombine them and produce the output the probability vector
(Fig. 5).
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2.1.3 Supervised and unsupervised learning

Neural networks can be used for a wide variety of tasks. Traditionally in machine learning,
we distinguish discriminative and generative tasks, associated with two learning frameworks,
supervised and unsupervised learning respectively.

Supervised learning is typically used to train algorithms to classify data or to predict outcomes
accurately. It can be applied to many discriminative tasks, such as music genre classification
(Fig. 5). The main feature of supervised learning is that it requires the training dataset to
be labeled. For every input, we need to know the ground truth, the output that we wish the
network to produce. By choosing the appropriate loss function (Eq. (4)), we can compare
the network prediction to the ground truth, and tell how well the network is doing. Then it
is a matter of training the network by back-propagating the gradient of this loss.

In case one wants to tackle generative tasks, supervised learning does not do the trick any-
more. Indeed, if one wants to generate new data, there is no ground truth as this data should
be inherently new. Researchers then rely on unsupervised learning. These algorithms dis-
cover hidden patterns and features in data, which is of the greatest interest since explicitly
defining the rules of a painting or music is tedious and difficult. We want to talk briefly
about generative models, which are unsupervised learning models.

2.1.4 Generative models

Generative models are trained to approximate the distribution of some data. Whether it is
image or sound, data distributions are complicated, high-dimensional probability distribu-
tions for which there usually exists no formula. The key goal is to learn an approximation
of the probability distribution pdata over the space D that supports the data. To do this, we
can use a number of samples from pdata that we refer as the training data.

The goal is to obtain a generator g : Rq → D that maps samples from a simple distribution
pz supported in a space Z, typically Rq, to points in D that resemble the given data. We thus
have a generator that can map points from a random distribution pz to a complex distribution
pdata. Therefore, when trained successfully, we can use generative models to easily create new
samples from the simple pz distribution.

Generative models have now reached an impressive generation quality, with some models
being able to create ultra realistic faces [25, 26], or to generate text that is almost indis-
tinguishable from those written by human authors [27]. These models have also been used
on music. For instance, in [3], the authors are able to learn how to harmonize melodies in
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STFT

ISTFT

Figure 6: From audio to spectrogram, and back to audio. The x-axis represents time (in
seconds) and the y-axis represents the frequency (in Hz).

the style of Bach chorales. However, when considering music as symbolic data, the sound
rendering is left to the user. Therefore, a whole branch of research is interested in how to
apply these models to directly generate audio content.

2.1.5 Generative modeling for audio

As presented earlier, there exist different techniques that have been implemented to train
generative models in music. Some have been trained directly from raw audio, relying on 1D
convolutions or recurrent neural networks in order to process the 1-dimensional waveforms
[10, 11]. These autoregressive models have been very influential and are still at the forefront
in various audio synthesis tasks [11]. However, unlike with GANs, the autoregressive setting
results in slow generation as output audio samples must be fed back into the model one at
a time. The Differentiable Digital Signal Processing (DDSP) model [5], overcomes this issue
by inferring generate control parameters for a synthesizer, rather than generating directly
raw audio outputs.

On the other hand, through the use of the Short Time Fourier Transform (STFT), many
works have transposed image processing models to audio processing [28]. Fig. 6 shows an
example of a spectrogram, which is a time-frequency representation of sound. Audio files
can be transformed into spectrograms through the STFT, and back to audio via the inverse
STFT. However, the inverse transform requires that we keep the imaginary part of the STFT,
which is a complex representation.

14
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Approaches using Variational Auto-Encoders on spectrograms allow to manipulate audio
in latent spaces learnt directly from the audio data [14] or by imposing precise perceptive
features on the structure of these spaces [13]. However, these models not allow to generate
convincing phase information. Hence, authors have to rely on alternative solutions, such as
using the Griffin-Lim algorithm to estimate the phase, like in SpecGAN [15]. Some works
even rely on the use of an auxiliary neural network which sole purpose is to convert amplitude
spectrograms back to the audio domain.

Another more straightforward way to overcome the phase issue is to rely on models that
can generate a convincing phase information, such as GANSynth [4]. By replacing the phase
information by its derivative, the more stable instantaneous frequency, the authors were able
to generate clean phase and perfectly invert the STFT. GANSynth even outperformsWaveNet
for the task of synthesizing musical notes using labels [4], with a much lesser generation time.
In this project, we are particularly interested in such Generative Adversarial Networks.

2.2 Generative Adversarial Networks

2.2.1 Principle of the Vanilla GAN

Generative Adversarial Networks (GANs) is an approach to generative modeling using deep
learning methods. It was introduced in 2014 by Goodfellow et al. [29].

GANs are a clever way to train a generative model by presenting the problem as a supervised
learning problem with two submodels: the generator (G) is trained to generate new examples,
and the discriminator (D) is trained to distinguish between real (from the dataset) or fake
(generated) examples (Fig. 7). The two models are trained together in a zero-sum game,
until the discriminator model is fooled about half the time, which means that the generator
model generates plausible examples.

In the GAN framework, we define z as the input (latent) noise. This noise comes from a
predefined distribution called the prior distribution, usually chosen as a multi-dimensional
Gaussian. We then define our generator Gθ which is a differentiable function represented by
an artificial neural network with parameters θ. The generator implicitly defines a probability
distribution pG as the distribution of samples G(z) obtained when z ∼ pz. We want the
generator with initial distribution pG to learn the distribution pdata. There is convergence
when pG is similar to pdata. We also define our discriminator as a second neural network Dφ

with parameters φ. Given an input x, D produces a single scalar Dφ(x) which represents
the probability that x comes from the data (hence real) rather than from Gθ(z) (generated

15
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Figure 7: The discriminator needs to distinguish the real and the fake (generated) samples,
while the generator needs to fool the discriminator by generating the most realistic samples.

data).

We train Dφ to maximize log(Dφ(x)), i.e. the probability of assigning the correct label to
both real data (i.e. "1") and generations of G (i.e. "0"). We simultaneously train Gθ to
minimize log(1−Dφ(Gθ(z))), i.e. minimize the number of data generation that will be listed
as false data (Fig. 7). In other words, Dφ and Gθ play the following two player minimax
game with the value function V(G,D):

min
θ

max
φ

V (D,G) = Ex∼pdata
[log(Dφ(x))] + Ez∼pz [log(1−Dφ(Gθ(z)))] (6)

2.2.2 Issues observed in GAN training

GAN training is commonly known as unstable. Among the numerous issues researchers face,
we describe two of the most common here.

Vanishing gradient In GANs architecture, the discriminator tries to minimize a cross-
entropy while the generator tries to maximize it. If the discriminator’s confidence is high
and starts to reject the samples that are produced by the generator, the generator’s gradient
vanishes. In effect, an optimal discriminator doesn’t provide enough information for the
generator to make progress [30].

Mode collapse Usually you want the GAN to produce a wide variety of outputs. You
want, for example, a different face for every random input to your face generator. However,
if a generator produces an especially plausible output, it may learn to produce only that
output. In fact, the generator is always trying to find the one output that seems most
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plausible to the discriminator. If the generator starts producing the same output (or a small
set of outputs) over and over again, the discriminator’s best strategy is to learn to always
reject that output. But if the next generation of discriminator gets stuck in a local minimum
and doesn’t find the best strategy, then it’s too easy for the next generator iteration to find
the most plausible output for the current discriminator. Each iteration of generator over-
optimizes for a particular discriminator, and the discriminator never manages to learn its
way out of the trap. As a result the generators rotate through a small set of output types.
This form of GAN failure is called mode collapse [31] .

2.2.3 Wasserstein GANs

In an attempt to stabilize GAN training, the more robust Wasserstein GANs (WGANs) were
introduced in [32]. Instead of using a discriminator to classify or predict the probability of
generated images as being real or fake, the WGAN replaces it with another model called
WGAN critic, that scores the realness or fakeness of a given image through a metric called
the Wasserstein distance. As explained in [32] and mentioned in [31], the discriminator in
a classic GAN can very quickly learn to distinguish between fake and real, and at the end,
provide no reliable gradient information for updating the generator model. As a contrary,
the WGAN critic has better properties and will give remarkably clean gradients all along
the training. The benefit of the WGAN is that the training process is more stable and less
sensitive to the model architecture and choice of hyper-parameter configurations.

2.2.4 Progressive Growing of GANs

Despite the improvement brought by the introduction of the Wasserstein distance, it was still
difficult to generate high-fidelity images in high resolution. Therefore, in parallel, a new GAN
training procedure called Progressive Growing of GANs (PGGAN or PGAN) was introduced
by Nvidia researchers [25]. They succeeded in obtaining ultra-realistic human face of size
1024*1024. The main idea behind the progressive training is to ask the model to not directly
produce huge images, but rather start with small images and increase the size progressively
(Fig. 8). This allows to reduce the complexity of the task and help the model to learn faster.
In high resolutions, the discriminator and the generator are extremely complex functions
and the generator can easily stay stuck in a minimum local. Progressively zooming in the
precision and the details will actually help the model to reach a global minimum.

In practice, the generator and the discriminator are made of blocks that consist of nearest-
neighbor interpolation (Fig. 9) and convolutions. Throughout the training, blocks are pro-
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Figure 8: Progressive Growing of GANs. As the training progresses, new blocks are added,
which allow to reach higher resolutions. Image from [25]

Figure 9: Nearest-neighbor interpolation used in PGAN. Here, we upsample the input by a
factor 2, going from resolution 2x2 to 4x4. In the discriminator, we rather downsample the
input.

gressively added to both the generator and the discriminator. Anytime during training, we
must be able to retrieve results to feed our discriminator and compare with real data. In [25],
the authors introduce the toRGB layer in order not to impose an information bottleneck in
the network’s graph. Indeed, if the network had to produce data-sized images in its core,
these images could only contain as many channels as there are in the data. Usually, this is a
small amount (3 for RGB images, 2 for complex spectrograms), much smaller than the num-
ber of channels typically used in convolutional layers. Hence, these toRGB layers are added
in parallel to the network, and allow to retrieve data-sized images anywhere in the network,
without reducing its learning abilities. The reverse thing happens in the discriminator, with
the fromRGB layers (Fig. 10).
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(a) The toRGB and fromRGB layers allow to retrieve an image-shaped output from the
network.
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(b) The toRGB and fromRGB layers are outside of the growing main network, allow-
ing to preserve the amount of convolution channels (feature maps) throughout the main
computational graph.

Figure 10: The toRGB and fromRGB layers.

2.3 DrumGAN

In this project, we aim at compressing a model called DrumGAN [20], a drum synthesizer
able to generate drums based on perceptual features such as boominess, hardness or depth.
DrumGAN is based on a convolutional Wasserstein GAN [32] and is trained following the
progressive growing framework [25] introduced in the previous section.

2.3.1 Model architecture

In the original paper [20], the input to the generator is the concatenation of the latent noise
z ∈ R128, sampled from an independent Gaussian distribution, and a conditioning vector
c ∈ R8, representing the 8 perceptual features. But the DrumGAN version we have worked
with was trained with 3 soft labels in place of the features, obtained from a classifier for
cymbals, high-hats and kicks. It is still represented as a vector c, but of size 3. As an
example, this vector represents the soft label of one random kick sample taken from the
dataset c = [0.003, 9.235e− 06, 0.996]

The resulting vector of size 131 is fed through 6 convolutional and up-sampling blocks to
generate the output signal x = Gθ(z, c). As depicted in figure 11, the generator’s input
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Figure 11: The architecture of DrumGAN. Image from [20]
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block performs a zero-padding in the time and frequency dimensions, and is followed by two
convolutional layers with ReLU non-linearity, in order to turn the 1D input vector into a
4D convolutional input. Then, each block is composed of one up-sampling step followed by
two convolutional layers with filters of size (3, 3) and ReLUs. The number of feature maps
decreases from low to high resolution as 256, 128, 128, 128, 64, 32.

In a reverse way, the discriminator is composed of convolutional downsampling blocks. At
the end of the network, the discriminator estimates the Wasserstein distance [32] between
the real and generated distributions, and predicts values for the 3 perceptual features.

Please note that at generation time, nothing constrains the soft-label vector c to a probability
vector that sums to 1. This is the only type of data the generator has seen during training,
but experience has showed that the generator can extrapolate to values higher than 1.

2.3.2 Training and Evaluation

DrumGAN was trained on a collection of 300000 drum samples. In the paper version of
DrumGAN, the samples were shortened to a duration of one second and down-sampled to a
sample rate of 16kHz. But the current version is trained with samples with a sample rate
of 44.1 kHz. The model is trained on the real and imaginary components of the Short-Time
Fourier Transform (STFT) (see Fig. 6), computed using a window size of 2048 samples and
75 % overlapping.

Following the PGAN training framework [25], the model was trained scale by scale, with a
total of 1.1M iterations during 200k iterations for each scale. The optimizer used for the
training was Adam [24] with a learning rate η = 0.001.

To evaluate the performance of the model, the authors use two quantitative metrics. First,
the Inception score measures whether the generated images are easy to classify or not. Then,
the Fréchet Audio Distance (FAD) [33] compares the statistics of real and generated data.
These metrics are explained later in section 3.3.2.

2.4 Compressing Neural Networks

As we have seen, these deep generative models are very heavy, power consuming and take
a lot of time to be trained. If we want to use the generative model on a mobile device or
perform it in real-time, we need to make it lighter. A series of techniques have been developed
for this purpose.

21



ATIAM Compressing audio generative models for embedded device

Classifier Softmax

Classification Loss

Figure 12: Standard training procedure for classifiers. (x, y) is an input data pair, l is the
logits and ŷ is the probability vector.

2.4.1 Knowledge Distillation

We will now introduce the basics of Knowledge Distillation (KD), developed in 2015 by
Hinton [34]. The idea behind knowledge distillation is to re-use the knowledge acquired by a
well-trained neural network called the teacher, to transfer it to into another smaller network
called the student. In some cases, distilled models may be able to generalize better in addition
to being significantly smaller [34].

We are now going to consider a simple handwritten digits classification task, with 10 classes
(digits 0 to 9). The output of a classification network usually is an unnormalized score for
each class (Fig. 12). This vector l, called the network’s logits, then goes through a softmax
layer that transforms it into a normalized probability vector y. The softmax operation is
defined as follows:

yi =
eli/T∑
i e
lj/T

(7)

where T is called the temperature parameter and allows to control the shape of the normalized
probability distribution. Then, the prediction y is compared to ground-truth labels, which
are represented as one-hot vectors (also called hard targets), to produce the classification
loss.

Because the softmax operation preserves ordering, the finally predicted class will be the one
assigned to the highest score/probability, both in the logit and probability vectors. Never-
theless, the other classes also get a score, which is valuable information we can use. Indeed,
when classifying an 8, class 3 might receive a high score, as both digits can look quite sim-
ilar. This specific information is not available to the network in a standard training, as the
ground-truth labels are represented as one-hot vectors.

In response-based distillation training, in addition to the standard classification loss com-
puted between the probability vector and the hard targets, the student network has to opti-
mize a distillation loss between its logits and those of the teacher (Fig. 13). The distillation
loss for response-based knowledge can be formulated as LLogits(x) = (lteacher(x), lstudent(x)),
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Figure 13: Training with knowledge distillation. The classification loss is completed with a
distillation loss.
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Figure 14: Feature-Based KD. A loss is computed between feature maps coming from the
teacher and the student.

where lteacher and lstudent are the logits of the teacher and the student. Using a weighted
average of these two loss functions, we are able to train a smaller student network to reach
a similar accuracy to that obtained with a larger teacher model.

We have just presented content-based distillation but, as presented by Gou et al. in their
survey [35], there exist different types of knowledge distillation. We want to talk about the
feature-based KD. It is very similar to the content-based KD, but instead of using the output
of the networks, we will rely on the feature maps, which are the outputs of the intermediate
(hidden) layers of both networks. When designed smartly, one can ensure that some feature
maps of the student have the same size as some feature maps of the teacher. We can then
compute the feature distillation loss, formulated as Lfeatures(fTeacher(x), fStudent(x)), where,
fTeacher and fStudent are some feature maps of the intermediate layers of the teacher and the
student.
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In addition to choosing the right loss terms, the quality of knowledge acquisition and distil-
lation from teacher to student is also determined by how to design the teacher and student
networks. In knowledge distillation, how to select or design proper structures of teacher and
student is a very important but difficult problem [36]. The model capacity gap between
the large deep neural network and a small student neural network can degrade knowledge
transfer. To effectively transfer knowledge to student networks, a variety of methods have
been proposed for a controlled reduction of the model complexity [37]. In [38], they proposed
a Residual Knowledge Distillation, which further distills the knowledge by introducing an
assistant. Specifically, the student is trained to mimic the feature maps of teacher, and the
assistant aids this process by learning the residual error between them.

2.4.2 Distillation of GANs

Recently, adversarial learning has received a great deal of attention due to its great success in
generative networks [29]. Inspired by this, many adversarial knowledge distillation methods
have been proposed.

In [39], the authors propose a method to compress GANs using knowledge distillation tech-
niques. The teacher and student GANs use the original WGAN architecture. The authors
experimented two methods; the first one uses MSE as the student training loss function using
a pre-trained teacher generator, yielding the following optimization objective:

min
θ

Ez[‖gteacher(z)− gθ(z)‖2] (8)

The second experiment uses a joint loss function that combines regular GAN training (equa-
tion 6) with MSE loss. Specifically, the student is trained to optimize the following objective:

min
θ

max
φ

[
Ex∼pdata [log(Dφ(x))]+Ez∼pz [α log(1−Dφ(gθ(z)))+(1−α)‖gteacher(z)−gθ(z)‖2]

]
(9)

where α controls the weight between the MSE loss and the regular GAN training. We must
mention a blurry point here, as figures in the original paper mention relying on a teacher
discriminator rather than training a student discriminator. This is in contradiction with the
presence of an optimization over the discriminator parameters φ. Therefore, in the results
section, we clarify how we have adapted these experiments to make them as clear as possible
to the reader.
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2.4.3 Other Compression techniques

There also exist two compressing techniques named pruning and quantization.

Pruning As proposed in [40, 41], it is possible to create smaller and more accurate models
using another model compression technique called pruning. The method consists in remov-
ing weight connections in a network. The traditional technique called unstructured pruning
acts on parameters deemed redundant or non-critical for network predictions by masking
them. Usually, we consider that these non-critical parameters are a fixed ratio of the small-
est weights. This method is however not suitable for embedded hardware because param-
eters are not removed but masked. Therefore the resulting model is not lighter nor less
computationally-expensive.

A novel method called structured pruning or trimming addresses those memory and speed
issues. Instead of masking individual weights in each layer of the neural network, this algo-
rithm looks for ineffective entire units (neurons) to be removed from the model. As entire
units are removed, considerable memory and inference time is saved because of the non-
linear relationship between trimming and computation. This results in a full-fledged model
compression, making it more embeddable. This approach has already proven to be success-
ful when applied to MIR tasks (pitch estimation, chord estimation, drum transcription ...)
on extremely compressed (up to a factor 100) state-of-the-art deep learning models without
considerable loss of accuracy [42].

Quantization Quantization is the process of approximating a neural network that uses
floating-point numbers by a neural network with lower bit width weights [43]. The standard
bit width for neural networks is 32 bits. We can quantize the model after the training (post-
training quantization), but also during the training (quantization-aware training) [44]. In
quantization, the goal is to reduce the precision of the neural network parameters θ and the
intermediate activation maps to low precision, with minimal impact on the accuracy of the
model.

Typically, float32 networks can be quantized to half-precision (float16 numbers, 16 bits re-
sulting in 2x compression) or to integer-based precision (int8 numbers, 8bits resulting in 4x
compression). However, the expected speedup is often smaller than the compression ratio,
depending on the casting rules setup by the computer’s CPU. For instance, according to Ten-
sorflow’s guide to quantization, most CPUs have to de-quantize the float16 values to float32,
discarding the benefits of the quantization step.
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To conclude, these compression techniques can also be combined to obtain further gains in
size reduction, as in [45].
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3 Experiments and results

After having studied generative models in audio and compression techniques, we implemented
a basic classifier. We then tested different techniques of knowledge distillation on this toy
model, following the paper [39]. We then switched to GAN models [29], and retrained Drum-
GAN [20] with the distillation techniques we tried earlier. This led us to different version
of student DrumGAN that we quantitatively and qualitatively measured. This includes
perceptive listening of the generated samples, but also the calculation of the Fréchet Au-
dio Distance (FAD) [33]. At last, we compared the influence of some parameters on the
inference/generation time. This would measure if the model could be embedded on light
computers and run in real-time.

3.1 Preliminaries - Distillation of a basic classifier

To get familiar with distillation methods, we first implemented a classifier that we then
distilled following the method of [39]. The toy datasets we used in this experience were
MNIST and FashionMNIST. We started with a simple ANN with fully connected layers, and
then tried with a CNN.

Following the architectures presented in [35], we built a teacher network and a corresponding
student network. We want to study the effect of distillation methods, and impact of some
basic parameters. The teacher was composed of four convolutional layers and two linear layers
(Tab. 1). The number of parameters of the teacher was 312842. Compared to the teacher,
the student was built with two times less convolutional layers. Our student eventually has
238986 parameters (Tab. 2).

We first trained our teacher following a standard classifier training (Fig. 12), with cross-
entropy loss. This model eventually reached an accuracy of 86% on FashionMNIST. We
then trained our student with three different approaches in order to compare the impact of
different loss terms.

3.1.1 Student training with classification loss

The first step was to simply evaluate the impact of convolutional layers reduction on the
model’s accuracy. Hence, we started by training our student following the same training
procedure as for the teacher, with cross-entropy loss (Fig. 12). The student reached an
accuracy of 75%, showing the capacity loss implied by the missing convolutional layers.
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Table 1: Our teacher architecture.

Operation # Input
Channels

# Output
Channels Kernel size Padding Output Size

(channels, H, W)
Image Input of size (1,28,28) (1,28,28)

Conv2d 1 64 (3,3) (1,1) (64,28,28)
ReLU - (64,28,28)

MaxPool2d 64 64 (2,2) - (64,14,14)
Dropout Dropout 0.2 (64,14,14)
Conv2d 64 64 (3,3) (1,1) (64,14,14)
ReLU - (64,14,14)

MaxPool2d 64 64 (2,2) - (64,7,7)
Conv2d 64 64 (3,3) (1,1) (64,7,7)
ReLU - (64,7,7)
Conv2d 64 64 (3,3) (1,1) (64,7,7)
ReLU - (64,7,7)

MaxPool2d 64 64 (2,2) - (64,7,7)
Linear 3136 64 - 64
Linear 64 10 - 10

Table 2: Our student architecture. Two convolutional layers have been removed, reducing
the capacity of the model.

Operation # Input
Channels

# Output
Channels Kernel size Padding Output Size

(channels, H, W)
Image Input of size (1,28,28) (1,28,28)

Conv2d 1 64 (3,3) (1,1) (64,28,28)
ReLU - (64,28,28)

MaxPool2d 64 64 (2,2) (64,14,14)
Dropout Dropout 0.2 (64,14,14)
Conv2d 64 64 (3,3) (1,1) (64,14,14)
ReLU - (64,14,14)

MaxPool2d 64 64 (2,2) (64,7,7)
Linear 3136 64 - 64
Linear 64 10 - 10
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3.1.2 Student training with Classification Loss and Logit Distillation Loss

On the second stage, we added the logit distillation loss, as illustrated on figure 13. We com-
puted the Mean Squared Error (MSE) between the softmax of the teacher and the student,
as follows:

Llogits = MSE(t, s) =
1

n

n∑
i=1

(ti − si)2. (10)

where we consider t and s as the output of the softmax layer for the teacher and the student
respectively. They are defined as :

ti =
elt,i/T∑
j e

lt,j/T
, si =

els,i/T∑
j e

ls,j/T
(11)

where lt and ls are the teacher and student logits. We computed the accuracy for different
temperatures T , which appeared to have a noticeable effect, accordingly to some previous
work [35]. Overall, the student model trained with Llogits +Lclassif reached a better accuracy
than the one trained with Lclassif only.

Temperature T 1 2 3 4 5
Prediction Accuracy (%) 81.2 81.1 79.2 80.6 81.4

Table 3: Accuracy scores for different values of the temperature T

3.1.3 Student training with Classification Loss, Logit Distillation Loss and Fea-
ture Distillation Loss

The third implementation was a training with the two previous losses, plus a feature distil-
lation loss. The feature distillation loss, illustrated in figure 14, is a loss between the feature
maps of the teachers and student. As presented earlier, the student has two convolutional
layers, and the teacher four. So the idea was to extract the outputs of the second and fourth
convolutional layers of the teacher (Tab. 1), which were designed to be the same size as the
first and second layers of the student (Tab. 2). This allowed us to compute a mean square
error between those outputs, as follows:

Lfeatures = MSE(fA, f2) + MSE(fB, f4) (12)
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where fA and fB are the first and second convolutional layers of the student, and f2 and f4

are the second and fourth convolutional layers of the teacher. The final loss had thus three
components:

Ltotal = Lclassif + Llogits + Lfeatures (13)

This time, we reached an accuracy of 85% for the student, an improvement of 10% compared
to the same model trained on classification only. This shows how impactful the distillation
losses are. In addition, despite not doing better than the teacher, we have observed that the
student reached 85% accuracy much faster than the teacher reached 86%.

3.2 DrumGAN Distillation

After having tested the benefit of the knowledge distillation technique on a toy example,
the goal was to build a new DrumGAN based on the distillation method. We mainly rely
on the distillation techniques of GANs developed in the articles [39] and [35]. Since we had
to build a drum generator able to synthesize new samples, we only needed to re-build a
generator, and no discriminator. For all following sections, some samples of generated audio
and spectrograms can be listened and observed on the accompanying website1.

3.2.1 Reducing the number of convolutional layers

In each block of the DrumGAN generator, there are 2 convolutional layers (Fig. 11). The idea
was to consider the architecture with only one convolutional layer per block (see appendix A).
We would eventually obtain the same output size, while reducing the number of parameters
by 30% (Tab. 4).

Number of Conv2d in each block Number of parameters
Teacher 2 8.8 millions
Student 1 6.1 millions

Table 4: Size comparison between teacher and student model

The first experiment consisted in training the student with an MSE loss that minimizes the
pixel level error between the images generated from the student and the teacher (Fig. 15).

1https://jeremybboy.github.io/compressed-drumgan/
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Teacher (fixed)

Output Distillation Loss

Figure 15: Initial distillation training scheme. The same input vector is fed into the teacher
and the student. Then, we compute the MSE between the generations.

Therefore, we simply train the student by solving the optimization problem :

min
θ

E(z,c)[‖gt(z, c)− gθ(z, c)‖2] (14)

Concerning the input, as in the original DrumGAN paper, z is sampled from a 128-dimensional
Gaussian distribution. However, as our teacher provides the training data here, there is no
need for a dataset. In addition, as we want our student model to best replicate the teacher’s
results for all values of c, there is no restriction on the sampling strategy of c. We started by
sampling c from a 3-dimensional Uniform distribution between 0 and 1.

Hence, DrumGAN takes as input a 131-dimensional vector and generates two tensors of size
[1,1024,64] for the real and imaginary parts. Rather than computing the MSE on the real
and imaginary parts directly, we match the literature and compute the MSE between the
two outputs amplitudes defined as:

Ampt = log[Re(gt(z, c))
2 + Im(gt(z, c))

2]

Amps = log[Re(gθ(z, c))
2 + Im(gθ(z, c))

2]
(15)

We monitored the convergence of the student network based on the generated outputs and
the loss trajectory. The student model was able to generate quite interesting samples that
can be heard here 2. The model learned an overall definition of drums, mixing the rich
spectrograms of cymbals, but also a strong attack, an important component in kicks.

Four samples of teacher and student are presented in the figure (16). We remind here that
the expected spectrogram from the teacher and the student are the same, because the input
vector is the same. We can observe that the student generated spectrograms were blurry. In
this training, we were asking the student generator to minimize the Euclidean distance, and
more precisely the averaged ([46]) distance between the generated images of the teacher and

2https://jeremybboy.github.io/compressed-drumgan/
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Figure 16: The generated magnitude spectrograms we see were obtained by feeding the
trained models (Student on the left and Teacher on the right) with 4 latent vectors of size
131. The output size is a vector of size (4, 2, 1024, 48). The student and the teacher generate
4 matrices with real and imaginary parts of size (1024,48).

student. As a consequence, it tends to produce blurry results.

Following the experiments with the toy model, we then considered a training with a feature
loss. This added loss had previously demonstrated a positive effect on the model performance.

3.2.2 Creating fake features

In a first time, we did not have access to the teacher features. Therefore, we decided to
experiment the effect of adding "fake" teacher features. Those fake features were obtained
by downsampling the final output of the teacher (size [2,1024,64]) at the corresponding size
for every features outputs. Indeed, during a progressive growing training, feature maps go
through toRGB layers, and should then resemble downsampled versions of real data. We
replicated this in our distillation training (Fig. 17).

In order to learn not only low-level but also high-level information from the teacher gener-
ator, we merge the two above loss functions. Thus, we trained the student by solving the
optimization problem :

min
θ

E(z,c)[‖gt(z, c)− gθ(z, c)‖2 +
6∑

n=1

‖DSi(gt(z, c))− toRGBi(fs,i(z, c, θ)‖2] (16)

where fs,i corresponds to the ith features of the student, toRGBi corresponds to the ith toRGB
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Teacher (fixed)

Output Distillation Loss

Fake Features Loss

Student toRGB layers

Figure 17: Our training with fake features. We use the toRGB layers in order to translate
the student features in the data domain.

layer of the student, and DSi(gt(z, c)) correspond to the downsampled version of the teacher’s
output that matches the size in scale i.

Unfortunately, we observed that this added loss didn’t help the training. As mentioned on
the CNNs section, the features maps usually allow to extract implicit knowledge. Intuitively,
we can interpret that these fake teacher features didn’t contain any knowledge, there were
only interpolated images of the final output.

3.2.3 Add the Teacher features

Following the paper distillation of GAN [39], and our previous experiments on the CNN
classifier, we then consider the actual teacher features. The intermediate layers provide rich
information and allow the student model to acquire more knowledge in addition to the teacher
outputs that we used in the previous experiments.

Student

Teacher (fixed)

Output Distillation LossFeatures Distillation Loss

Figure 18: Student training with the added feature loss. Teacher and student are composed
of 6 blocks (see A), from which we extract the feature map outputs and compute a MSE
Loss.
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We used the MSE as the feature distillation loss:

Lfeatures=

6∑
n=1

‖ft,i(z, c)− fs,i(z, c, θ)‖2 (17)

Therefore, optimizing problem of the proposed method was :

min
θ

E(z,c)

[
‖gt(z, c)− gθ(z, c)‖2 +

6∑
n=1

‖ft,i(z, c)− fs,i(z, c, θ)‖2
]

(18)

This feature loss really helped the student. Firstly, we obtained nicer generated samples,
with less artifacts3. Moreover, we obtained a better score in the Fréchet Audio Distance,
as we can observe in the table 5. Eventually, the feature loss seems to have stabilized the
training, as we see in the figure 19.

Figure 19: Comparison of the losses over epochs. On the left, the training with the feature
loss. On the left, the training of the first student model, without the feature loss. They were
extracted from Tensorboard, with the same smoothing scale of 0.75.

3.2.4 Add a discriminator loss

In order to bring more guidance to the generator, we tried to add another penalty ; the
Wassertein distance. This metric is detailed in the section 2.2.3. When doing an adversarial
training, the generator keeps proposing new images that tend to be more and more realistic.
But this realism is due to the discriminator model which always back propagate information
to the generator, by telling if the images are true or fake. In order to reproduce this, we
added a trained discriminator that would evaluate the generations of the student generator.
By adding as well this adversarial loss from a discriminator teacher, we could gain a bit more

3https://jeremybboy.github.io/compressed-drumgan/
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precision (sharpness) in the generated spectrograms. Here, we train the student by solving
the optimization problem :

min
θ

E(z,c)

[
‖gteacher(z)− gθ(z)‖2 +

6∑
n=1

‖ft,i(z, c)− fs,i(z, c, θ)‖2 +W (pt||ps)
]

(19)

where pt and ps are respectively teacher and student generation distributions.

This added loss consequently helped the student. We obtained more realistic drums than
with the previous model4. However, a large proportion of the samples generated were sorts
of Kicks. This phenomenon can be interpreted as a mode collapse [31]. GANs can sometimes
suffer from the limitation of generating samples with little representative of the population.
The model fails to generalize to the all variety of possible distributions and samples and
almost only generate distributions of kicks. Doing that allows it to minimize its loss function.
That may highlight that the student realized that energy is important in the low frequency
for all three kinds of drums (Fig. 20). Indeed, we can observe from the spectrograms that
almost all the generations have a strong value in the low frequencies. Thus the model may
have decided to generate all the samples with a strong value in the low frequency the reduce
the overall loss.

Figure 20: Drums spectral comparison. We can observe that the three drums have a strong
energy in low frequencies. Moreover, we observe that the bass drum/kick spectrogram is the
poorest in terms of harmonics and thus the easiest to learn.

4https://jeremybboy.github.io/compressed-drumgan/
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3.2.5 Use a real Dataset

At first, no dataset was really needed. Indeed, the trained teacher generator was used as a
data generator. The student goal was to generate, from any input vector, the exact same
image as the teacher. As described earlier, the input vector used here is the concatenation
of a Gaussian random vector of size 128 and a conditional vector of size 3. The last will give
information on how much "Kick", "Cymbal" and "Hats" need to be felt in the generated
sample. This triplet is called the soft-label c. In order to improve the results, we then
thought that it could be relevant to use real values for c, rather than sampling it from a
uniform distribution. Indeed, the initial training of DrumGAN was made with a dataset of
300 000 samples and every sample had its specific soft-label that was extracted with feature
extractors. Thus, we recreated a realistic dataset of soft-labels that would be used as input
for the student generator.

In terms of generation variety and quality, this last model is the most interesting one5.

The distilled model we obtain was able to generate some interesting samples, with more
variety than the previous models (Fig. 21). We can also easily see that the student performed
better in approaching the expected spectrogram of its teacher.

Figure 21: On the left: generations of the student. On the right : generations of the teacher

5https://jeremybboy.github.io/compressed-drumgan/
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3.3 Evaluation Metrics

Objective evaluation of generated audio is not an easy task. Still, specific metrics and
techniques make it possible to obtain quite relevant qualitative and quantitative evaluations.

3.3.1 Qualitative Evaluation

Many different approaches have been used to evaluate generative models and they all have
some bias [47]. With GANs, the goal is to create a model able to generate new audios. So we
can’t compare it to some existing inputs. One intuitive metric of performance can be obtained
by having human annotators judging the perceptive quality of audio samples. One could ask
a group of people to rate examples of real and generated audios. This is a labor-intensive
exercise, although costs can be lowered by using a crowd sourcing platform, and efficiency
can be increased by using a web interface. A major downside of the approach is that the
performance of human judges is not fixed and can improve over time. This is especially the
case if they are given feedback, such as clues on how to detect real and generated samples.
It is still harder to fool a discriminator than a human, fortunately. Still, the first perceptual
evaluation can be done by evaluating different samples from the student models we trained
during the experiments in 6.

3.3.2 Quantitative Evaluation

Besides perceptual evaluation of the generations of the models, there are specific numerical
scores used to summarize the quality of generated audios. The two most common GAN
evaluation measures are Inception Score (IS) and Fréchet Inception Distance (FID).

Inception score IS uses an Inception model classifier to measures if the generated images
are or not easy to classify. If a generated dataset can be easily organized, it means that it can
be considered as a good dataset. It also measures the diversity of generations, by calculation
the distributions of classes in the generated dataset. However, Inception score does not
consider real images at all, and so cannot measure how well the generator approximates the
real distribution.

Fréchet Audio Distance The Fréchet Inception Distance (FID) measures the distance
between the feature vectors (or embeddings) of generated images and real images. The idea

6https://jeremybboy.github.io/compressed-drumgan/
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is to extract the feature vectors of real and generated images from a model pre-trained for
classification, thus yielding meaningful features. A low FID means that the distributions of
features are close. Let’s consider the distribution of two models pf and pr. We calculate
the feature wise mean of the feature vectors (mf and mr) and the covariance of the feature
vectors (Cf and Cr) to obtain a Gaussian (maximum entropy distribution). We then compute
the FID formula:

F ((mf , Cf ), (mr, Cr)) = ||mf −mr||22 + Tr(Cf + Cr − 2((CfCr)
1
2 ))

When the distributions are 1-dimensional, the FID formula is equivalent to :

F (pf , pr)) = ||mf −mr||22 + ||Cf − Cr||22

The Fréchet Audio Distance (FAD) was introduced in [33] and is based on the FID that we
just presented. Like the FID, The FAD is interesting because is allows to score an evaluation
set without a ground truth reference image. Indeed, we cannot compare a pixel to pixel
generated image and the real image, because the generated image is unique. If we cannot
compare images, we can still compare embeddings generated from fakes images of GANs and
real images. Similar to FID, the embeddings are obtained from a pre-trained model called
VGGish [48]. This model derives from the VGG image recognition architecture, and has
been trained on Youtube video as an audio classifier with 3000 classes.

The input we give to the model is log-mel features extracted from the magnitude spectrogram
over 1s of audio. Even if the audios usually lasts longer than 1s, the model has proven efficient
enough. The feature maps layer are closer to output nodes that correspond to real-world
images of spectrograms such as a specific timbre of Rhodes or a guitar bass, and further from
the shallow layers near the input image, as we see in figure (22). As a result, they tend to
mimic human perception of similarity in sounds.

Ablation study To better evaluate the performance of our trained models, and measure
the contribution of the components we used for our knowledge distillation, we computed the
FAD of the different student models. We recall that the lower the FAD, the smaller the
distance between distributions of real and generated data. The student n°3 is the simplest
one, where we only computed the MSE loss between the generations of the teacher and
student outputs [39]. With the student n°2, we then added a feature loss, computing the
MSE between the teacher and student feature maps. This loss had a serious impact since
the FAD dropped from 18.52 to 6.91. With the student n°1, we eventually added a teacher
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Figure 22: Extraction of embeddings from the VGGish network. On the left, the real and
the generated samples. After having extracted the Log Mel features of the samples, we pass
them in the VGGish network (pink). We use the last convolutional feature map to obtain
embeddings for real and generated data. We then compute the FAD between those two
embeddings.

Models Loss type Fréchet Audio Distance
Teacher WGAN Losses 2.11
Student 1 MSE outputs + Features Loss + Classification Loss 4.94
Student 2 MSE outputs + Features Loss 6.91
Student 3 MSE on outputs 18.52

Table 5: Fréchet Audio Distance of the different models. We used 5000 drums samples to
calculate the background embeddings. We then calculated the embeddings of the different
trained models generations and eventually computed the FADs.

discriminator loss. This loss had a positive effect on the model, making the FAD drop to
4.91. Still, it is reasonable to say from the FAD results in table 5 that the influence of this
loss was not as important as the feature loss.

3.3.3 Test of the compressed model on small computers

Even if the generations by the new models we trained were not as relevant as the ones of
the original DrumGAN, we wanted to test and run them on different computers. This would
allow us to know in what extent a compressed model could be embedded on tiny devices.
We used a computer with a graphic processor unit (GPU Nvidia GTX1080), a laptop with a
i7 CPU (16gb RAM), and a Raspberry Pi 4 (4gb RAM). We measure the time for a trained
generator model to generate 1 sample, and a batch of 64 samples (Fig. 6). Calculations
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Model GPU CPU Raspberry
Nb of samples 1 sample 64 samples 1 sample 64 samples 1 sample 64 samples

Teacher 598 ms 785 ms 195 ms 5308 ms 6156 ms X
Student 526 ms 662 ms 147 2932 ms 3081 ms X

Table 6: Inference time on different devices.

on Raspberry are still in process. We already observe an improvement with the GPU. The
student is more than 10 % faster in terms of generation time for both 1 and 64 samples.

We observe that the CPU time for 1 generation is faster than the GPU time. That’s because
CPUs are designed with fewer processor cores that have higher clock speeds (in our CPU, up
to 4.2 Ghz) than the ones found on GPUs (in our GPU, up to 1,7 GHz), allowing them to
complete series of tasks very quickly. GPUs, on the other hand, have much greater number
of cores and are designed for a different purpose. When it comes to multiple generations,
we observe a strong gap between CPU and GPU. Indeed, it takes almost 3 seconds for the
student to generate 64 samples with a CPU, when it took 662 ms with a GPU. GPUs generate
more quickly than a CPU because of its parallel processing architecture, which allows it to
perform multiple calculations simultaneously. Coming back to teacher-student comparison,
we observe more than 2 seconds difference between the generation time student and teacher.
This confirms that compressing the architecture of a neural network has a relevant impact
on inference time.

The Raspberry was not able to pass 64 samples at the same time. Torch.conv2d throws
runtime error if invoked with large kernels. Indeed, Pytorch versions for ARM are specific,
and they use an acceleration package for neural networks called NNPACK. This library was
originally created to optimize models like Darknet without using a GPU. It is useful for
embedded devices using ARM CPUs.
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4 Discussion and Conclusion

Discussion In this internship, we studied compressing techniques aimed at reducing power
consumption and inference time of generative models in audio. Due to time constraints, we
focused our experiments on Knowledge distillation (KD) [34]. We first re-implemented two
knowledge distillation techniques presented in [39], and then trained a student DrumGAN
generator. In conclusion, we obtained a smaller DrumGAN, able to generate quite interesting
sounds, especially kick drums samples. The inference time was also reduced, which confirmed
the potential benefit of such compressing method for our project. We conducted an ablation
study to evaluate the performance of our trained model, and measure the contribution of the
components we used for our knowledge distillation. Our experiments confirmed the impact of
the feature loss and concluded that it really helped the training. However, the final student
model we obtained was not able to compete with his teacher in terms of perceived audio
quality7 nor quantitative performance [33]. Also, the time gained seems not to be enough in
order to develop the visualization discussed in the introduction.

A noticeable problem we have faced during the end of this internship is that DrumGAN’s
research framework was not really designed for the kind of production-time optimization we
wanted to perform. This made the last round of experiments (progressive distillation and
quantization) quite tricky.

In terms of knowledge distillation, a future experiment would consist in implementing a
progressive growing distillation training. This would imply a classical training of PG-WGAN,
plus an added distillation loss from a teacher network that would guide the student and
make the training faster. This could even allow to further compress the model in order to
gain significant time. We have tried to setup such a training during the last month of this
internship but given the complexity of the existing code base we used, it turned out to be
more difficult than expected.

It would also be interesting to test the other techniques that were introduced in the state of
the art. We could implement a quantization-aware training [43] and evaluate the resulting
quantized model performance. The structured pruning technique [45] would have to be
adapted to the progressive growing training [25].

Finally, deep learning frameworks for on-device inference have recently been developed, e.g.
Tensorflow Lite. Compared to Pytorch or Tensorflow, they are optimized for light models and
embedding on light CPUs like smartphones. They are widely supported and can be found

7https://jeremybboy.github.io/compressed-drumgan/
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in many frameworks, tools, and hardware. Many AI projects including an audio classifier8

have been developed on Raspberry using Tensorflow lite. Hence, we could try to convert our
Pytorch-based model to Tensorflow lite. This could be done using a standardized format
for neural networks called Open Neural Network Exchange (ONNX), that also contains an
inference accelerator, called ONNX Runtime, that must be worth trying.

An interesting consideration that I have been discussing with the other researchers in the
lab is the alternative of using instance of GPU in the cloud, in order to run the model with
no inference latency, and almost no latency at all given existing internet speeds. Strong and
heavy models can be run on the tiniest device, as long as it can be connected to internet
and call the API to receive the inference result from the server. But it makes the hardware
dependant on Internet access. Even if our coming connected devices era suggests that internet
access will be widely accessible, this is not that much portable. This could even be a major
issue as some studios decide not to setup an internet connection to minimize the risk of
hackers attacks and music leaks.
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Figure 23: Student and teacher architecture
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Table 7: DrumGAN student architecture. As we can observe, each block of the student is
composed of Up-sampling, Conv2d and Leaky ReLU layers. The teacher has two Conv2d
and LeykyReLU layers on each block, which makes is more complex.

Module List Operation IN
Channel

OUT
Channel Kernel size Padding Output Size

(channels, H, W)
Latent vector
(131)

Unsqueeze 131 131 (131,1)
Unsqueeze 131 131 (131,1,1)

Input Block

ZeroPad2d - (3,2,16,15)

(256,32,6)

Conv2d 131 131 (33,7) (16,3)
Conv2d 131 256 (3,3) (1,1)

LeakyReLU -
Conv2d 256 256 (3,3) (1,1)

LeakyReLU -

Block 1
Up-Sample Scale factor = (1,1), mode nearest

(256,32,6)Conv2d 256 256 (3,3) (1,1)
LeakyReLU -

Block 2
Up-Sample Scale factor = (2,2), mode nearest

(128,64,12)Conv2d 256 128 (3,3) (1,1)
LeakyReLU -

Block 3
Up-Sample Scale factor = (2,2), mode nearest

(128,128,24)Conv2d 128 128 (3,3) (1,1)
LeakyReLU -

Block 4
Up-Sample Scale factor = (2,2), mode nearest

(128,256,48)Conv2d 128 128 (3,3) (1,1)
LeakyReLU -

Block 5
Up-Sample Scale factor = (2,2), mode nearest

(64,512,48)Conv2d 128 64 (3,3) (1,1)
LeakyReLU -

Block 6
Up-Sample Scale factor = (2,2), mode nearest

(32,1024,48)Conv2d 64 32 (3,3) (1,1)
LeakyReLU -

ToRGB Conv2d 32 2 (1,1) (1,1) (2,1024,48)
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